Decision Support System Series

Distance to the Ideal Alternative (DIA)

Contoh implementasi DSS (Decision Support System) dengan metode DIA (Distance to the Ideal Alternative) menggunakan PHP dan MySQL untuk penentuan penerima beasiswa

Metode DIA (Distance to the Ideal Alternative) merupakan metode yang didasarkan pada prinsip-prinsip sebagaimana pada metode TOPSIS. Metode ini dikembangkan guna memperbaiki metode sebelumnya yaitu metode TOPSIS.

author : cahya dsn, published on : August 8th, 2019 updated on : May 29th, 2022

minerva minerva donasi donation

Mau lihat artikel lainya? Dapatkan artikel-artikel lain seputar pemrograman website di sini, dan dapatkan ide-ide baru

Penerapan Metode Distance to the Ideal Alternative (DIA) diharapkan mampu untuk membantu dalam menentukan penerima beasiswa dari beberapa kandidat mahasiswa yang diajukan, untuk menerima beasiswa pendidikan di Perguruan Tinggi

Lembaga pendidikan seperti di sekolah-sekolah, perguruan tinggi banyak sekali beasiswa yang ditawarkan kepada siswa yang kurang mampu dan siswa berprestasi. Seperti yang tertuang dalam Undang-Undang Dasar 1945 pasal 31 ayat 1 yang berbunyi “bahwa tiap-tiap warga Negara berhak mendapatkan pengajaran”. Sehingga pemerintah pusat dan pemerintah daerah wajib memberikan kemudahan kepada warga Negara untuk mendapat pendidikan yang bermutu. Untuk mendapatkan pendidikan yang bermutu diperlukan biaya yang tidak sedikit. Oleh karena itu bagi peserta didik yang orang tuanya kurang mampu dan peserta didik yang berprestasi berhak mendapatkan biaya pendidikan yang biasanya sering disebut beasiswa.

Ada 20 kandidat mahasiswa yang akan dipilih dari hasil interview dan berkas yang diajukan ke tim Penyeleksi penerima beasiswa yang akan dijadikan alternatif; yaitu Nina, Usman, Mirza, Reza, Tantri, Vicky, James, Firza, Gatot, Carlie, Lina, Yuna, Bella, Dewi, Zaki, Oscar, Shinta, Pandu, Intan, dan Kevin .

Ada 5 kriteria dasar yang menjadi acuan dalam pengambilan keputusan, yaitu:

  • C1: IPK
  • C2: Penghasilan Orang Tua
  • C3: Jumlah Saudara Kandung
  • C4: Tagihan Listrik
  • C5: Semester

2.1. Kriteria dan Bobot

Pada kasus penentuan perumahan terbaik ini telah ditentukan 5 buah kriteria yang diperhitungkan, yaitu ipk, penghasilan ortu, jumlah saudara kandung, tagihan listrik, dan semester dengan rincian bobot penilaian seperti pada TABEL 1 berikut :

TABEL 1 : Kriteria dan Bobot
KodeNamaBobot (%)Tipe[1]
C1Ipk40max
C2Penghasilan Ortu25min
C3Jumlah Saudara Kandung10max
C4Tagihan Listrik5min
C5Semester20min
[1] `max` menandakan lebih besar lebih baik (Benefit Criteria) sedangkan `min` menandakan lebih kecil lebih baik (Cost Criteria)

2.2. Contoh Data

Data-data awal yang akan diperhitungkan dengan metoda DIA ini adalah seperti yang tercantum dalam TABEL 2 berikut ini [2]

TABEL 2 : Contoh Data
Alternatif Kriteria
Kode Nama C1C2C3C4C5
A1Nina45423
A2Usman44415
A3Mirza33225
A4Reza33144
A5Tantri43445
A6Vicky25443
A7James14446
A8Firza25443
A9Gatot23314
A10Carlie33254
A11Lina54224
A12Yuna34416
A13Bella43154
A14Dewi54456
A15Zaki34256
A16Oscar23445
A17Shinta65455
A18Pandu35135
A19Intan35156
A20Kevin45135

Keterangan

  • C1 : ipk
  • C2 : penghasilan ortu
  • C3 : jumlah saudara kandung
  • C4 : tagihan listrik
  • C5 : semester

[2] Data yang diberikan merupakan data yang sudah dikuantisasi, bukan berupa data mentah

2.3. Perhitungan

Berikut ini akan dijabarkan perhitungan dengan metoda DIA secara manual lengkah demi langkah untuk memudahkan pemahaman terhadap metoda DIA ini

2.3.1. Matriks Keputusan (X)

Langkah pertama adalah membuat matriks keputusan (X) dari data awal yang ada. Dari data pada TABEL 2 dapat dibuat matriks keputusan sebagai berikut :

$X=\left[ \begin{array}{ccccc}\\ 4 & 5 & 4 & 2 & 3 \\4 & 4 & 4 & 1 & 5 \\3 & 3 & 2 & 2 & 5 \\3 & 3 & 1 & 4 & 4 \\4 & 3 & 4 & 4 & 5 \\2 & 5 & 4 & 4 & 3 \\1 & 4 & 4 & 4 & 6 \\2 & 5 & 4 & 4 & 3 \\2 & 3 & 3 & 1 & 4 \\3 & 3 & 2 & 5 & 4 \\5 & 4 & 2 & 2 & 4 \\3 & 4 & 4 & 1 & 6 \\4 & 3 & 1 & 5 & 4 \\5 & 4 & 4 & 5 & 6 \\3 & 4 & 2 & 5 & 6 \\2 & 3 & 4 & 4 & 5 \\6 & 5 & 4 & 5 & 5 \\3 & 5 & 1 & 3 & 5 \\3 & 5 & 1 & 5 & 6 \\4 & 5 & 1 & 3 & 5\end{array} \right]$

2.3.2. Matriks Normalisasi (R)

Setelah matriks keputusan dibuat, selanjutnya adalah membuat matriks keputusan yang ternormalisasi R yang fungsinya untuk memperkecil range data, dengan tujuan untuk mempermudah perhitungan DIA dan penghematan penggunaan memory.

Sesuai dengan persamaan [DIA-02] dapat dihitung nilai normalisasinya; sebagai contoh untuk data r15,2 didapat:

$\begin{align}r_{15,2}&=\frac{x_{15,2}}{\sqrt{x^2_{1,2} + x^2_{2,2} + x^2_{3,2} + x^2_{4,2} + x^2_{5,2} + x^2_{6,2} + x^2_{7,2} + x^2_{8,2} + x^2_{9,2} + x^2_{10,2} + x^2_{11,2} + x^2_{12,2} + x^2_{13,2} + x^2_{14,2} + x^2_{15,2} + x^2_{16,2} + x^2_{17,2} + x^2_{18,2} + x^2_{19,2} + x^2_{20,2}}}\\ &=\frac{4}{\sqrt{5^2 + 4^2 + 3^2 + 3^2 + 3^2 + 5^2 + 4^2 + 5^2 + 3^2 + 3^2 + 4^2 + 4^2 + 3^2 + 4^2 + 4^2 + 3^2 + 5^2 + 5^2 + 5^2 + 5^2}}\\ &=\frac{4}{\sqrt{25 + 16 + 9 + 9 + 9 + 25 + 16 + 25 + 9 + 9 + 16 + 16 + 9 + 16 + 16 + 9 + 25 + 25 + 25 + 25}}\\ &=\frac{4}{\sqrt{334}}\\ &=0.21887026206583\end{align}$

Dengan cara yang sama dapat diperoleh hasil nilai ri,j untuk semua alternatif Ai dan kriteria Cj , sehingga dapat dibentuk matrik Normalisasi (R) sebagai berikut

R = 0.2550.2740.2900.1200.140
0.2550.2190.2900.0600.233
0.1910.1640.1450.1200.233
0.1910.1640.0730.2390.186
0.2550.1640.2900.2390.233
0.1280.2740.2900.2390.140
0.0640.2190.2900.2390.279
0.1280.2740.2900.2390.140
0.1280.1640.2180.0600.186
0.1910.1640.1450.2990.186
0.3190.2190.1450.1200.186
0.1910.2190.2900.0600.279
0.2550.1640.0730.2990.186
0.3190.2190.2900.2990.279
0.1910.2190.1450.2990.279
0.1280.1640.2900.2390.233
0.3830.2740.2900.2990.233
0.1910.2740.0730.1800.233
0.1910.2740.0730.2990.279
0.2550.2740.0730.1800.233

Pada matrik Normalisasi R di atas, data per-baris dari baris ke-1 s.d. baris ke-20 menunjukan data per-alternatif Ai, sedangkan data per-kolom, dari kolom ke-1 s.d. kolom ke-5 adalah data per-kriteria Cj

2.3.3. Matriks Normalisasi Terbobot (V)

Langkah berikutnya, sesuai dengan persamaan [DIA-02] nilai dari masing-masing data ternormalisasi (R) kemudian dikalikan dengan bobot (W) untuk mendapatkan matriks keputusan ternormalisasi terbobot Y. Sebagai contoh untuk data r15,2 dapat dicari nilai untuk v15,2 sebagai berikut:

$\begin{align}v_{15,2}&=r_{15,2}\cdot w_{2}\\ &=0.21887026206583 * 0.25\\ &=0.054717565516458\end{align}$

Dari semua data pada matrik normalisasi R dilakukan perhitungan yang sama dengan perhitungan tersebut, sehingga diperoleh matriks Normalisasi Terbobot (V) sebagai berikut

V = 0.1020.0680.0290.0060.028
0.1020.0550.0290.0030.047
0.0770.0410.0150.0060.047
0.0770.0410.0070.0120.037
0.1020.0410.0290.0120.047
0.0510.0680.0290.0120.028
0.0260.0550.0290.0120.056
0.0510.0680.0290.0120.028
0.0510.0410.0220.0030.037
0.0770.0410.0150.0150.037
0.1280.0550.0150.0060.037
0.0770.0550.0290.0030.056
0.1020.0410.0070.0150.037
0.1280.0550.0290.0150.056
0.0770.0550.0150.0150.056
0.0510.0410.0290.0120.047
0.1530.0680.0290.0150.047
0.0770.0680.0070.0090.047
0.0770.0680.0070.0150.056
0.1020.0680.0070.0090.047

2.3.4. Matriks Solusi Ideal (A)

Matriks Solusi Ideal (A) merupakan nilai optimum untuk tiap-tiap kriteria, dari beberapa nilai alternatif solusi. Solusi ideal yang dicari terdiri dari dua nilai untuk masing-masing kriteria, yaitu Solusi Ideal Positif (A+) dan Solusi Ideal Negatif (A-)

2.3.4.1. Solusi Ideal Positif (A+)

Solusi Ideal Positif (A+) merupakan nilai optimum maksimum (terbesar) dari suatu kriteria untuk beberapa nilai alternatif solusi dalam satu kriteria.

TABEL 3 : Solusi Ideal Positif
KriteriaSolusiMax
C1 - ipk0.102 ; 0.102 ; 0.077 ; 0.077 ; 0.102 ; 0.051 ; 0.026 ; 0.051 ; 0.051 ; 0.077 ; 0.128 ; 0.077 ; 0.102 ; 0.128 ; 0.077 ; 0.051 ; 0.153 ; 0.077 ; 0.077 ; 0.1020.153
C2 - penghasilan ortu0.068 ; 0.055 ; 0.041 ; 0.041 ; 0.041 ; 0.068 ; 0.055 ; 0.068 ; 0.041 ; 0.041 ; 0.055 ; 0.055 ; 0.041 ; 0.055 ; 0.055 ; 0.041 ; 0.068 ; 0.068 ; 0.068 ; 0.0680.068
C3 - jumlah saudara kandung0.029 ; 0.029 ; 0.015 ; 0.007 ; 0.029 ; 0.029 ; 0.029 ; 0.029 ; 0.022 ; 0.015 ; 0.015 ; 0.029 ; 0.007 ; 0.029 ; 0.015 ; 0.029 ; 0.029 ; 0.007 ; 0.007 ; 0.0070.029
C4 - tagihan listrik0.006 ; 0.003 ; 0.006 ; 0.012 ; 0.012 ; 0.012 ; 0.012 ; 0.012 ; 0.003 ; 0.015 ; 0.006 ; 0.003 ; 0.015 ; 0.015 ; 0.015 ; 0.012 ; 0.015 ; 0.009 ; 0.015 ; 0.0090.015
C5 - semester0.028 ; 0.047 ; 0.047 ; 0.037 ; 0.047 ; 0.028 ; 0.056 ; 0.028 ; 0.037 ; 0.037 ; 0.037 ; 0.056 ; 0.037 ; 0.056 ; 0.056 ; 0.047 ; 0.047 ; 0.047 ; 0.056 ; 0.0470.056

Dalam TABEL 3 ditampilkan data-data solusi alternatif untuk tiap-tiap kriteria dari masing-masing alternatif. Dengan mengambil nilai maksimal dari tiap-tiap kriteria maka diperoleh Solusi Ideal Positif ($A^{+}$) sebagai berikut :
$A^{+}=[0.153\ ,\ 0.068\ ,\ 0.029\ ,\ 0.015\ ,\ 0.056]$

2.3.4.2. Solusi Ideal Negatif (A-)

Solusi Ideal Negatif (A-) merupakan nilai optimum minimum (terkecil) dari suatu kriteria untuk beberapa nilai alternatif solusi dalam satu kriteria.

Pada TABEL 4 berikut ini, ditampilkan kembali nilai-nilai solusi alternatif dari setiap kriteria, dengan mengambil nilai minimum (terendah) dari setiap kriteria maka akan didapatkan nilai solusi ideal negatif A- untuk kriteria tersebut

TABEL 4 : Solusi Ideal Negatif
KriteriaSolusiMin
C1 - ipk0.102 ; 0.102 ; 0.077 ; 0.077 ; 0.102 ; 0.051 ; 0.026 ; 0.051 ; 0.051 ; 0.077 ; 0.128 ; 0.077 ; 0.102 ; 0.128 ; 0.077 ; 0.051 ; 0.153 ; 0.077 ; 0.077 ; 0.1020.026
C2 - penghasilan ortu0.068 ; 0.055 ; 0.041 ; 0.041 ; 0.041 ; 0.068 ; 0.055 ; 0.068 ; 0.041 ; 0.041 ; 0.055 ; 0.055 ; 0.041 ; 0.055 ; 0.055 ; 0.041 ; 0.068 ; 0.068 ; 0.068 ; 0.0680.041
C3 - jumlah saudara kandung0.029 ; 0.029 ; 0.015 ; 0.007 ; 0.029 ; 0.029 ; 0.029 ; 0.029 ; 0.022 ; 0.015 ; 0.015 ; 0.029 ; 0.007 ; 0.029 ; 0.015 ; 0.029 ; 0.029 ; 0.007 ; 0.007 ; 0.0070.007
C4 - tagihan listrik0.006 ; 0.003 ; 0.006 ; 0.012 ; 0.012 ; 0.012 ; 0.012 ; 0.012 ; 0.003 ; 0.015 ; 0.006 ; 0.003 ; 0.015 ; 0.015 ; 0.015 ; 0.012 ; 0.015 ; 0.009 ; 0.015 ; 0.0090.003
C5 - semester0.028 ; 0.047 ; 0.047 ; 0.037 ; 0.047 ; 0.028 ; 0.056 ; 0.028 ; 0.037 ; 0.037 ; 0.037 ; 0.056 ; 0.037 ; 0.056 ; 0.056 ; 0.047 ; 0.047 ; 0.047 ; 0.056 ; 0.0470.028

Dari hal tersebut sehingga diperoleh Solusi Ideal Negatif ($A^{-}$) sebagai berikut :
$A^{-}=[0.026\ ,\ 0.041\ ,\ 0.007\ ,\ 0.003\ ,\ 0.028]$

2.3.5. Hitung jarak Manhattan untuk Atribut Positif (D+) dan Negatif(D-)

Disebut Manhattan ini berdasar pada kota Manhattan yang tersusun menjadi blok-blok. Sehingga sering juga disebut city block distance, juga sering disebut sebagai ablosute value distance atau boxcar distance. Rumusan pencarian jarak Manhattan untuk atribut positif (D+) dan negatif (D-) dicari berdasarkan persamaan DIA-08 dan DIA-09

Sebagai contoh perhitungan, untuk alternatif A2, dapat dicari nilai atribut positif D+ dan negatif-nya D- sebagai berikut:

$\begin{align}D_2^{+} &= \Sigma_{i=1}^{m}[V_{i,2}-a_{i}^{+}]\\ &= [V_{1,2}-a_{1}^{+}]+[V_{2,2}-a_{2}^{+}]+[V_{3,2}-a_{3}^{+}]+[V_{4,2}-a_{4}^{+}]+[V_{5,2}-a_{5}^{+}]\\ &= (0.068-0.153)+(0.055-0.068)+(0.041-0.029)+(0.041-0.015)+(0.041-0.056)\\ &=0.085964057329951\end{align}$

$\begin{align} D_2^{-} &= \Sigma_{i=1}^{m}[V_{i,2}-a_{i}^{-}]\\ &= [V_{1,2}-a_{1}^{-}]+[V_{2,2}-a_{2}^{-}]+[V_{3,2}-a_{3}^{-}]+[V_{4,2}-a_{4}^{-}]+[V_{5,2}-a_{5}^{-}]\\ &= (0.068-0.026)+(0.055-0.041)+(0.041-0.007)+(0.041-0.003)+(0.041-0.028)\\ &= 0.13056256865798\end{align}$

Dengan cara yang sama dapat dihitung nilai atribut positif dan negatif dari alternatif-alternatif yang lain. Setelah semua nilai atribut positif dan negatif-nya dihitung maka diperoleh data seperti dalam TABEL 5 sebagai berikut:

TABEL 5 : Jarak Manhattan
AlternatifD+D-
A10.087900928458360.12862569752958
A20.0859640573299510.13056256865798
A30.136662620533350.079864005454583
A40.147235381737550.069291244250391
A50.0906631836077270.12586344238021
A60.132920222102530.083606403885402
A70.144188155692230.072338470295708
A80.132920222102530.083606403885402
A90.167209190359220.049317435628718
A100.1369871975360.079539428451937
A110.0812819342131560.13524469177478
A120.10216228374850.11436434223944
A130.118738891514570.09778773447337
A140.0391824599016480.17734416608629
A150.104698121948920.11182850403902
A160.141669320652790.074857305335142
A170.00930484210398470.20722178388395
A180.113565178575780.10296144741216
A190.0982734930709010.11825313291704
A200.0880621100532450.12846451593469

2.3.6. Menentukan Positif Ideal Alternatif (PIA)

Dalam menentukan nilai Positif Ideal Alternatif (PIA) perlu dicari terlebih dahulu nilai minimunD+ dan nilai maksimum D- dari semua alternatif. Dari data yang diperoleh pada perhitungan sebelumnya (TABEL 5 ) diperoleh nilai D+ terkecil dan nilai D- terbesar sebagai berikut:

$min\ D^{+} = 0.0093048421039847$
$max\ D^{-} = 0.20722178388395$
sehingga sesuai persamaan DIA-10 diperoleh nilai PIA (Positif Ideal Alternatif)-nya adalah
$\begin{align}PIA&=(min\ D^{+},max\ D^{-})\\ &=(0.0093048421039847,\ 0.20722178388395)\end{align}$

2.3.7. Melakukan Identifikasi Peringkat

Tahapan yang terakhir adalah melakukan identifikasi peringkat dengan mengacu pada persamaan DIA-11 dapat kita peroleh nilai Preferensi P dari masing-masing alternatif A. Sebagai contoh untuk alternatif A15 (Zaki) dapat dihitung nilai preferensinya (P15) sebagai berikut:

$\begin{align}P_{15}&=\sqrt{(D_{15}^{+}-min(D_{15}^{+}))^{2}+(D_{15}^{-}-max(D_{15}^{-}))^{2}}\\ &=\sqrt{(0.10469812194892-0.0093048421039847)^{2}+(0.11182850403902-0.20722178388395)^{2}}\\ &=\sqrt{0.095393279844931^{2}+(-0.095393279844931)^{2}}\\ &=\sqrt{0.0090998778395733+0.0090998778395733}\\ &=\sqrt{0.018199755679147}\\ &=0.13490647011595\end{align}$

Dengan melakukan perhitungan yang sama untuk data-data alternatif dari A1 sampai dengan A20 diperoleh nilai Preferensi dari P1 sampai dengan P20, dan setelah diurutkan dari nilai preferensi yang terkecil sampai yang terbesar didapat hasil perangkingan sebagai berikut:

TABEL 6 : Hasil Perengkingan
NoAlternatif ($A$)Nilai Preferensi ($P$)
KodeNamaKodeTotal
1$A_{17}$Shinta$P_{17}$0
2$A_{14}$Dewi$P_{14}$0.042253332300855
3$A_{11}$Lina$P_{11}$0.10179097984097
4$A_{2}$Usman$P_{2}$0.10841250185344
5$A_{1}$Nina$P_{1}$0.1111516512718
6$A_{20}$Kevin$P_{20}$0.1113795964693
7$A_{5}$Tantri$P_{5}$0.11505806996677
8$A_{19}$Intan$P_{19}$0.12582067282345
9$A_{12}$Yuna$P_{12}$0.13132025334094
10$A_{15}$Zaki$P_{15}$0.13490647011595
11$A_{18}$Pandu$P_{18}$0.14744638185599
12$A_{13}$Bella$P_{13}$0.15476311686185
13$A_{6}$Vicky$P_{6}$0.17481854691185
14$A_{8}$Firza$P_{8}$0.17481854691185
15$A_{3}$Mirza$P_{3}$0.18011109752852
16$A_{10}$Carlie$P_{10}$0.1805701187277
17$A_{16}$Oscar$P_{16}$0.18719164074017
18$A_{7}$James$P_{7}$0.19075381141432
19$A_{4}$Reza$P_{4}$0.19506323981522
20$A_{9}$Gatot$P_{9}$0.22331047086023

Sehingga diperoleh hasil Alternatif A17 (Shinta) dengan nilai preferensi P17=0 menjadi yang terpilih sebagai penerima beasiswa karena mempunyai nilai akhir perangkingan yang terendah

Source code selengkapnya bisa dilihat di tautan ini source source