Decision Support System Series

COmbinative Distance-based Assessment (CODAS)

Contoh implementasi DSS (Decision Support System) dengan dengan Metode COmbinative Distance-based Assessment (CODAS) menggunakan PHP dan MySQL untuk pemilihan supplier bahan baku terbaik

Metode COmbinative Distance-based Assessment (CODAS) merupakan salah satu metode pengambilan keputusan multikriteria berdasarkan pada jarak Euclidian dan Taxicab dari nilai ideal negatif.

author : cahya dsn, published on : July 23rd, 2020 updated on : March 13th, 2021

minerva minerva donasi donation

Mau lihat artikel lainya? Dapatkan artikel-artikel lain seputar pemrograman website di sini, dan dapatkan ide-ide baru

Pre-requisites

  • Pemahaman terhadap dasar-dasar Sistem Pengambilan Keputusan
  • Pemahaman terhadap dasar-dasar teknologi Web,HTML dan CSS
  • Pemahaman terhadap dasar-dasar basis data/database, terutama query SQL pada MySQL/mariaDB
  • Pemahaman terhadap dasar-dasar pemrograman PHP, terutama fungsi-fungsi koneksi database dan pengelolaan tipe data array

1.1. Tahapan Metode CODAS

Metode COmbinative Distance-based Assessment CODAS diperkenalkan oleh Keshavaraz - Ghorabaee,et all pada tahun 2016. Dalam melakukan menyelesaikan masalah dan perangkingan, metode CODAS memiliki beberapa langkah yaitu:

1.1.1. Pembentukan Matriks Keputusan (Decision Making Matrix - X)

Pada matriks keputusan (X), baris menunjukkan Alternatif dan kolom menunjukkan kriteria. Matriks keputusan menunjukkan kinerja dari masing-masing alternatif terhadap berbagai kriteria

$X=\left[\begin{array}{cccc} x_{01} & \ldots & x_{0j} & \ldots & x_{0n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i1} & \ldots & x_{ij} & \ldots & x_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{m1} & \ldots & x_{m2} & \ldots & x_{mn} \\ \end{array}\right] (i=0,1,2,...,m; j=1,2,...,n)$
.. [COD-01]

xij ($x_{ij}\geq0$) menunjukkan nilai kinerja alternatif ke-i pada kriteria ke-j, m adalah banyaknya alternatif sedangkan n adalah banyaknya kriteria ($i \in \{1,2,3,.. m\}$ dan $j \in \{1,2,3,..,m\}$).

1.1.2. Membentuk Matriks Normalisasi (N)

Dari matriks keputusan (X) yang diperoleh, dibuat matriks Normalisasi (N)-nya dengan persamaan:

$\begin{align} n_{ij}=\begin{cases} \frac{x_{ij}}{\substack{\text{max} \\i} x_{ij} } &\text{if j}\in N_{b}\\ \frac{\substack{\text{min} \\i} x_{ij}}{x_{ij}} &\text{if j}\in N_{c}\\ \end{cases} \end{align}$
.. [COD-02]

dimana nilai dari Nb dan Nc adalah masing-masing untuk kriteria benefit dan cost

1.1.3. Menentukan Matriks Normalisasi Terbobot (R)

Nilai normalisasi terbobot (R) dihitung dengan persamaan sebagai berikut :

$r_{ij}=w_{j}\times n_{ij}$
.. [COD-03]

dimana $w_{j} (0 < w_{j}<1)$ merupakan nilai bobot (weight) dari kriteria ke $j$, sedangkan :

$\sum_{j=1}^{m}w_{j}=1$
.. [COD-04]

1.1.4. Menentukan Nilai Ideal Negatif (NS)

Tahap berikutnya adalah menentukan nilai Ideal Negatif (NS) untuk tiap-tiap kriteria, yang diperhitungakan dari data semua alternatif. Matriks Nilai Ideal Negatif yang terbentuk adalah :

$ns=[ns_{j}]_{1\times m}$
.. [COD-05]

dimana nilai dari $ns_{j}$ adalah merupakan nilai ternormalisasi terbobot (R) terkecil/minimum untuk setiap kriteria ke $j$:

$ns_{j}=\substack{\text{min} \\i} r_{ij}$
.. [COD-06]

1.1.5. Menghitung Jarak Euclidian dan Taxicab (E/T)

Jarak Euclidian (E) untuk setiap alternatif ke-$i$ diperhitungkan dengan persamaan sebagai berikut :

$E_{i}=\sqrt{\sum^{m}_{j=1}(r_{ij}-ns_{j})^2}$
.. [COD-07]

Sedangkan Jarak Taxicab (T) untuk setiap alternatif ke-$i$ diperhitungkan dengan persamaan :

$T_{i}=\sum^{m}_{j=1} |r_{ij}-ns_{j}|$
.. [COD-08]

1.1.6. Membentuk Matriks Relative Assessment (RA)

$Ra=[h_{ik}]_{ n\times n}$
.. [COD-09]
$h_{ik}=(E_{i}-E_{k})+(\psi (E_{i}-E_{k})\times(T_{i}-T_{k}))$
.. [COD-10]

dimana nilai $k \in \{1,2, ... , n\}$ dan $\psi$ menunjukkan fungsi ambang batas untuk mengenali perbandingan jarak Euclidean dari dua alternatif, dan dirumuskan sebagai berikut :

$\begin{align}\psi(x)=\begin{cases}1 &\text{if |x| }\geq \tau\\0 &\text{if |x| <}\tau \end{cases}\end{align}$
.. [COD-11]

Dalam fungsi tersebut, nilai $\tau$ adalah nilai parameter ambang batas yang dapat ditentukan oleh pengambil keputusan. Nilai yang disarankan untuk nilai parameter ini adalah antara $0.01$ sampai dengan $0.05$. Sedangkan nilai $|x|$ adalah nilai absolute dari selisih nilai jarak Euclidean dari alternatif ke-i ($E_i$) dengan alternatif ke-k ($E_k$)

1.1.7. Mengitung Nilai Assessment Score (H)

Berikutnya adalah menghitung nilai Assessment Score H untuk setiap alternatif sebagai berikut:

$H_{i}=\sum_{k=1}^n h_{ik}$
.. [COD-12]

1.1.8. Perankingan

Tahap yang terakhir adalah perangkingan dari nilai Assessment Score H dari nilai yang tertinggi hingga yang terendah. Alternatif dengan nilai yang tertinggi menunjukkan alternatif yang terbaik.

2.1. Kriteria dan Bobot

Pada kasus penentuan pemilihan supplier terbaik ini telah ditentukan 7 buah kriteria yang diperhitungkan, yaitu Responsibilitas, Pengiriman, Fleksibilitas, Kebijakan Garansi, Histori Performansi, Biaya langsung, dan Kualitas dengan rincian bobot penilaian seperti pada TABEL 1 berikut :

TABEL 1 : Kriteria dan Bobot Pemilihan Pemasok
KodeKriteriaTipe[1]Bobot[2]
C1Responsibilitasbenefit0.071
C2Pengirimanbenefit0.196
C3Fleksibilitasbenefit0.125
C4Kebijakan Garansibenefit0.107
C5Histori Performansibenefit0.089
C6Biaya langsungcost0.179
C7Kualitasbenefit0.250
[1] `benefit` menandakan lebih besar lebih baik (Benefit Criteria) scodngkan `cost` menandakan lebih kecil lebih baik (Cost Criteria)
[2] Nilai bobot ditentukan oleh pakar/orang yang berwenang/kompeten untuk memberi pembobotan; atau bisa diperoleh dari hasil kuisioner

2.2. Contoh Data

Data-data awal yang akan diperhitungkan dengan metoda CODAS ini adalah seperti yang tercantum dalam TABEL 2 berikut ini [3]

TABEL 2 : Contoh Data
Alternatif Kriteria
Kode Nama C1C2C3C4C5C6C7
A1Boga Extra3589845
A2Rasa Extra4379833
A3Sari Extra3387435
A4Rasa Inti4479653
A5Organik Sejahtera2479433
A6Sari Sejahtera1556435
A7Sari Prima1546635
A8Sari Mandiri3389535
A9Fresh Inti1387464
A10Sari Utama1578735

Keterangan

  • C1 : Responsibilitas
  • C2 : Pengiriman
  • C3 : Fleksibilitas
  • C4 : Kebijakan Garansi
  • C5 : Histori Performansi
  • C6 : Biaya langsung
  • C7 : Kualitas

[3] Data yang diberikan merupakan data yang sudah dikuantisasi, bukan berupa data mentah. Data dalam contoh di generate secara otomatis dari nilai acak/random

2.3. Perhitungan

Berikut ini akan dijabarkan perhitungan dengan metoda CODAS secara manual lengkah demi langkah untuk memudahkan pemahaman terhadap metoda CODAS ini

2.3.1. Matriks Keputusan (X)

Langkah pertama adalah membuat matriks keputusan (X) dari data awal yang ada. Dari data pada TABEL 2 dapat dibuat matriks keputusan sebagai berikut :

$X=\left[ \begin{array}{ccccccccccc}\\ 3 & 5 & 8 & 9 & 8 & 4 & 5 \\4 & 3 & 7 & 9 & 8 & 3 & 3 \\3 & 3 & 8 & 7 & 4 & 3 & 5 \\4 & 4 & 7 & 9 & 6 & 5 & 3 \\2 & 4 & 7 & 9 & 4 & 3 & 3 \\1 & 5 & 5 & 6 & 4 & 3 & 5 \\1 & 5 & 4 & 6 & 6 & 3 & 5 \\3 & 3 & 8 & 9 & 5 & 3 & 5 \\1 & 3 & 8 & 7 & 4 & 6 & 4 \\1 & 5 & 7 & 8 & 7 & 3 & 5\end{array} \right]$

Pada matriks keputusan (X) tersebut, data pada baris ke-i adalah menunjukan data dari Alternatif ke-i; scodngkan data pada kolom ke-j menunjukkan kriteria ke-j. Misalnya untuk data x2,3 menunjukkan data untuk alternatif ke 2 yaitu Rasa Extra untuk kriteria ke 3 (Fleksibilitas) dengan nilai 7

Secara lengkap, matriks keputusan (X) yang diperoleh dapat ditampilkan dalam bentuk tabel sebagai berikut

TABEL 3 : Matriks Keputusan (X)
Alternatif Kriteria
KodeNama C1C2C3C4C5C6C7
A1Boga Extra3589845
A2Rasa Extra4379833
A3Sari Extra3387435
A4Rasa Inti4479653
A5Organik Sejahtera2479433
A6Sari Sejahtera1556435
A7Sari Prima1546635
A8Sari Mandiri3389535
A9Fresh Inti1387464
A10Sari Utama1578735

2.3.2. Matriks Normalisasi (N)

Matrik Normalisai (N) untuk dari data tiap-tiap alternatif dan kriteria diperhitungkan berdasarkan persamaan COD-02. Untuk data yang bertipe benefit, sebagai contoh untuk data $x_{2,3}$ diperhitungkan sebagai berikut

$\begin{align} n_{2,3}&=\frac{x_{2,3}}{max_{3}} \\ &=\frac{7}{8} \\ &=0.875\end{align}$

Sedangkan untuk kriteria yang bertipe cost diperhitungkan seperti untuk data $x_{2,6}$ sebagai berikut

$\begin{align} n_{2,6}&=\frac{min_{6}}{x_{2,6}} \\ &=\frac{3}{3} \\ &=1.000\end{align}$

Dengan perhitungan yang sama, dilakukan perhitungan nilai normalisai N untuk data-data yang lain sehingga diperoleh matriks Normalisasi N sebagai berikut:

$N=\left[\begin{array}{ccccccc} \\ 0.750 & 1.000 & 1.000 & 1.000 & 1.000 & 0.750 & 1.000 \\ 1.000 & 0.600 & 0.875 & 1.000 & 1.000 & 1.000 & 0.600 \\ 0.750 & 0.600 & 1.000 & 0.778 & 0.500 & 1.000 & 1.000 \\ 1.000 & 0.800 & 0.875 & 1.000 & 0.750 & 0.600 & 0.600 \\ 0.500 & 0.800 & 0.875 & 1.000 & 0.500 & 1.000 & 0.600 \\ 0.250 & 1.000 & 0.625 & 0.667 & 0.500 & 1.000 & 1.000 \\ 0.250 & 1.000 & 0.500 & 0.667 & 0.750 & 1.000 & 1.000 \\ 0.750 & 0.600 & 1.000 & 1.000 & 0.625 & 1.000 & 1.000 \\ 0.250 & 0.600 & 1.000 & 0.778 & 0.500 & 0.500 & 0.800 \\ 0.250 & 1.000 & 0.875 & 0.889 & 0.875 & 1.000 & 1.000 \\ \end{array}\right] $

Secara lengkap, matriks Normalisasi (N) yang diperoleh dapat ditampilkan dalam bentuk tabel sebagai berikut

TABEL 4 : Matriks Normalisasi (N)
Alternatif Kriteria
KodeNama C1C2C3C4C5C6C7
A1Boga Extra0.7501.0001.0001.0001.0000.7501.000
A2Rasa Extra1.0000.6000.8751.0001.0001.0000.600
A3Sari Extra0.7500.6001.0000.7780.5001.0001.000
A4Rasa Inti1.0000.8000.8751.0000.7500.6000.600
A5Organik Sejahtera0.5000.8000.8751.0000.5001.0000.600
A6Sari Sejahtera0.2501.0000.6250.6670.5001.0001.000
A7Sari Prima0.2501.0000.5000.6670.7501.0001.000
A8Sari Mandiri0.7500.6001.0001.0000.6251.0001.000
A9Fresh Inti0.2500.6001.0000.7780.5000.5000.800
A10Sari Utama0.2501.0000.8750.8890.8751.0001.000

2.3.3. Membuat Matriks Normalisasi Terbobot (R)

Setelah didapat nilai normalisasinya (N), berikutnya adalah membuat Matriks Normalisasi Terbobot (R) maka berdasarkan persamaan COD-03 dan COD-04 dapat dicari nilai R-nya. Sebagai contoh untuk kriteria ke-3 (Fleksibilitas) pada alternatif ke-2 (Rasa Extra) bisa dihitung nilai r2,3 sebagai berikut:

$\begin{align} r_{2,3}&= w_{3} \times n_{2,3} \\ &=0.125 \times 0.875 \\ &=0.109 \\ \end{align}$

Dengan perhitungan yang sama untuk semua data dari matriks normalisasi (N) diperoleh data matriks normalisasi terbobot (R) seperti dalam TABEL 5 berikut ini:

TABEL 5 : Matriks Normalisasi Terbobot (R)
No.AlternatifR
KodeNamaC1C2C3C4C5C6C7
1A1Boga Extra0.0540.1960.1250.1070.0890.1340.250
2A2Rasa Extra0.0710.1180.1090.1070.0890.1790.150
3A3Sari Extra0.0540.1180.1250.0830.0450.1790.250
4A4Rasa Inti0.0710.1570.1090.1070.0670.1070.150
5A5Organik Sejahtera0.0360.1570.1090.1070.0450.1790.150
6A6Sari Sejahtera0.0180.1960.0780.0710.0450.1790.250
7A7Sari Prima0.0180.1960.0620.0710.0670.1790.250
8A8Sari Mandiri0.0540.1180.1250.1070.0560.1790.250
9A9Fresh Inti0.0180.1180.1250.0830.0450.0890.200
10A10Sari Utama0.0180.1960.1090.0950.0780.1790.250

2.3.4. Menentukan Nilai Ideal Negatif (NS)

Nilai NS merupakan adalah merupakan nilai ternormalisasi terbobot (R) terkecil/minimum untuk setiap kriteria ke j. Sebagai contoh, sesuai dengan persamaan COD-05 dan COD-06 didapat nilai NS3 , yaitu nilai Ideal Negatif untuk kriteria ke-3 (Fleksibilitas)) sebagai berikut :

$\begin{align} ns_{3}&= \substack{\text{min} \\i} r_{i,3}\\ &=\text{min}\{r_{1,3}, r_{2,3}, r_{3,3}, r_{4,3}, r_{5,3}, r_{6,3}, r_{7,3}, r_{8,3}, r_{9,3}, r_{10,3}\}\\ &=\text{min}\{0.125, 0.109, 0.125, 0.109, 0.109, 0.078, 0.062, 0.125, 0.125, 0.109\}\\ &=0.062\\ \end{align}$

Nilai dari ns3 diambil dari nilai minimum (terkecil) dari nilai ternormalisasi terbobot R dari setiap alternatif untuk kriteria ke-3
Setelah dilakukan perhitungan yang sama untuk kriteria-kriteria yang lain, maka diperoleh nilai Ideal Negatif NS seperti dalam TABEL 6 berikut ini :

TABEL 6 : Nilai Ideal Negatif (NS)
No.KriteriaNS
KodeNama
1C1Responsibilitas0.018
2C2Pengiriman0.118
3C3Fleksibilitas0.062
4C4Kebijakan Garansi0.071
5C5Histori Performansi0.045
6C6Biaya langsung0.089
7C7Kualitas0.150

2.3.5. Menghitung Jarak Euclidian dan Taxicab (E/T)

Berdasarkan persamaan COD-07 Jarak Euclidian (E) untuk setiap alternatif ke-i dapat dihitung, semisal untuk alternatif ke-2 (Rasa Extra) dapat ditentukan nilai Jarak Euclidian-nya (E2) seperti perhitungan berikut:

$\begin{align} E_{2}&=\sqrt{\sum^{m}_{j=1}(r_{2,j}-ns_{j})^2}\\ &=\sqrt{(r_{2,1}-ns_{1})^2+(r_{2,2}-ns_{2})^2+(r_{2,3}-ns_{3})^2+(r_{2,4}-ns_{4})^2+(r_{2,5}-ns_{5})^2+(r_{2,6}-ns_{6})^2+(r_{2,7}-ns_{7})^2}\\ &=\sqrt{(0.071-0.018)^2+(0.118-0.118)^2+(0.109-0.062)^2+(0.107-0.071)^2+(0.089-0.045)^2+(0.179-0.089)^2+(0.150-0.150)^2}\\ &=\sqrt{(0.054)^2+(0.000)^2+(0.047)^2+(0.036)^2+(0.045)^2+(0.089)^2+(0.000)^2}\\ &=\sqrt{0.003+0.000+0.002+0.001+0.002+0.008+0.000}\\ &=\sqrt{0.016307597257653}\\ &=0.12770120303918\end{align}$

Sedangkan nilai Jarak Taxicab (T) dari alternatif ke 2(Rasa Extra) yaitu nilai T2-nya di perhitungkan sebagai berikut:

$\begin{align} T_{2}&=\sum^{m}_{j=1} |r_{2,j}-ns_{j}|\\ &=|r_{2,1}-ns_{1}|+|r_{2,2}-ns_{2}|+|r_{2,3}-ns_{3}|+|r_{2,4}-ns_{4}|+|r_{2,5}-ns_{5}|+|r_{2,6}-ns_{6}|+|r_{2,7}-ns_{7}|\\ &=|0.071-0.018|+|0.118-0.118|+|0.109-0.062|+|0.107-0.071|+|0.089-0.045|+|0.179-0.089|+|0.150-0.150|\\ &=|0.054|+|0.000|+|0.047|+|0.036|+|0.045|+|0.089|+|0.000|\\ &=0.054+0.000+0.047+0.036+0.045+0.089+0.000\\ &=0.27008928571429\end{align}$

Untuk alternatif-alternatif yang lain bisa dihitung nilai E/T-nya dengan cara yang sama, dan hasilnya adalah sebagai berikut:

TABEL 7 : Nilai Jarak Euclidian/Taxicab (E/T)
No.AlternatifET
KodeNama
1A1Boga Extra0.163150.40179
2A2Rasa Extra0.127700.27009
3A3Sari Extra0.152630.29940
4A4Rasa Inti0.093290.21563
5A5Organik Sejahtera0.115360.22902
6A6Sari Sejahtera0.156170.28348
7A7Sari Prima0.156980.29018
8A8Sari Mandiri0.156700.33437
9A9Fresh Inti0.080920.12440
10A10Sari Utama0.167420.37202

2.3.6. Membentuk Matriks Relative Assessment (RA)

Matriks Relative Assessment (RA) dibentuk berdasarkan pada persamaan COD-09, COD-10, dan COD-11. Nilai parameter ambang batas ($\tau$) pada contoh kasus ini adalah sebesar 0.04 [4] . Sebagai contoh perhitungan, untuk nilai $h_{2,1}$ diperhitungkan sebagai berikut:

$\begin{align} h_{2,1}&=(E_{i}-E_{1})+(\psi (E_{2}-E_{1})\times(T_{2}-T_{1})) \\ &=(0.128-0.163)+(\psi (0.128-0.163)\times(0.270-0.402)) \\ &=(-0.035)+(\psi (-0.035)\times(-0.132)) \\ &\text{dengan nilai }\tau=0.04,\text{ maka diperoleh nilai } \psi (-0.035) = 0, \text{ sehingga diperoleh } \\ h_{2,1}&=-0.035+(0 \times -0.132) \\ &=-0.035+0 \\ &=-0.035\end{align}$

[4] Nilai $\tau$ yang digunakan dalam artikel ini ditentukan secara random oleh sistem, antara 0.01 s.d. 0.05

Dengan menghitung semua nilai hi,k dari semua alternatif yang ada, diperoleh hasil seperti terlihat di TABEL 8 berikut ini:

TABEL 8 : Matriks Relative Assessment (RA)
NoAlternatif A1A2A3A4A5A6A7A8A9A10
1A10.0000.0350.0110.2560.2210.0070.0060.0060.360-0.004
2A2-0.0350.000-0.0250.0340.012-0.028-0.029-0.0290.192-0.040
3A3-0.0110.0250.0000.1430.037-0.004-0.004-0.0040.247-0.015
4A4-0.256-0.034-0.1430.000-0.022-0.131-0.138-0.1820.012-0.231
5A5-0.221-0.012-0.0370.0220.000-0.095-0.103-0.1470.034-0.195
6A6-0.0070.0280.0040.1310.0950.000-0.001-0.0010.234-0.011
7A7-0.0060.0290.0040.1380.1030.0010.0000.0000.242-0.010
8A8-0.0060.0290.0040.1820.1470.001-0.0000.0000.286-0.011
9A9-0.360-0.192-0.247-0.012-0.034-0.234-0.242-0.2860.000-0.334
10A100.0040.0400.0150.2310.1950.0110.0100.0110.3340.000

2.3.7. Menghitung Nilai Assessment Score (H)

Langkah berikutnya dalam metode CODAS ini adalah menghitung Nilai Assessment Score (H) berdasarkan persamaan COD-12. Semisal untuk nilai Assessment Score untuk alternatif ke-2 (Rasa Extra) adalah sebagai berikut:

$\begin{align} H_{2}&=\sum_{k=1}^{10}h_{2,k}\\ &=h_{2,1}+h_{2,2}+h_{2,3}+h_{2,4}+h_{2,5}+h_{2,6}+h_{2,7}+h_{2,8}+h_{2,9}+h_{2,10}\\ &=(-0.035)+0.000+(-0.025)+0.034+0.012+(-0.028)+(-0.029)+(-0.029)+0.192+(-0.040)\\ &=0.052380173396134\end{align}$

Melalui perhitungan yang serupa dapat dihitung untuk nilai Assessment Score dari alternatif-alternatif yang lainnya, sehingga diperoleh hasil seperti terlihat pada TABEL 9 berikut ini:

TABEL 9 : Assessment Score (H)
NoAlternatifAssessment Score (H)
KodeNama
1A1Boga Extra0.89745595850687
2A2Rasa Extra0.052380173396134
3A3Sari Extra0.41474717959846
4A4Rasa Inti-1.1249088366351
5A5Organik Sejahtera-0.75351438047844
6A6Sari Sejahtera0.47279779293408
7A7Sari Prima0.50100146114863
8A8Sari Mandiri0.63072528586151
9A9Fresh Inti-1.9416268465447
10A10Sari Utama0.85094221221252

2.3.8. Perangkingan

Nilai skor penilaian Assessment Score (H) yang diperoleh dari hasil perhitungan sebelumnya selanjutnya diurutkan dari yang terbesar hingga yang terendah seperti terlihat dalam TABEL 10 seperti berikut ini :

TABEL 10 : Perangkingan
NoAlternatifAssessment Score (H)Ranking
KodeNama
1A1Boga Extra0.897455958506871
2A10Sari Utama0.850942212212522
3A8Sari Mandiri0.630725285861513
4A7Sari Prima0.501001461148634
5A6Sari Sejahtera0.472797792934085
6A3Sari Extra0.414747179598466
7A2Rasa Extra0.0523801733961347
8A5Organik Sejahtera-0.753514380478448
9A4Rasa Inti-1.12490883663519
10A9Fresh Inti-1.941626846544710

Dari hasil perankingan nilai skor penilaian (AS) tersebut, diperoleh bahwa lokasi ke-1 (Boga Extra) dengan skor penilaian sebesar 0.89745595850687 terpilih sebagai pemasok bahan baku yang paling baik, berdasar kriteria-kriteria dan bobot yang sudah ditentukan.

3.1. Persiapan Database

Sebagai bahan pembelajaran aplikasi CODAS ini; dibuat database (dalam hal ini menggunakan MySQL/MariaDB Database server) sebagai berikut:

CREATE DATABASE IF NOT EXISTS db_dss;
USE db_dss;

Awalnya membuat dulu database dengan nama db_dss jika belum ada database dengan nama tersebut, kemudian gunakan database tersebut dengan memakai sintak USE db_dss;

Dalam hal ini, pembuatan database memakai command console dari database server yang bersangkutan

3.1.1. Membuat Data Tabel Kriteria

Berdasarkan contoh kasus di atas dibuatkan tabel untuk data-data kriteria sebagai berikut:

-- menghapus tabel cod_criterias jika sudah ada
DROP TABLE IF EXISTS cod_criterias;
-- membuat tabel cod_criterias jika tidak ada
CREATE TABLE IF NOT EXISTS cod_criterias(
  id_criteria TINYINT(3) UNSIGNED NOT NULL,
  criteria VARCHAR(100) NOT NULL,
  weight FLOAT NOT NULL,
  attribute SET('benefit','cost'),
  PRIMARY KEY(id_criteria)
)ENGINE=MyISAM;

-- memasukkan data-data kriteria
INSERT INTO cod_criterias(id_criteria,criteria,weight,attribute)
VALUES
(1,'Responsibilitas',0.0710,'benefit'),
(2,'Pengiriman',0.1960,'benefit'),
(3,'Fleksibilitas',0.1250,'benefit'),
(4,'Kebijakan Garansi',0.1070,'benefit'),
(5,'Histori Performansi',0.0890,'benefit'),
(6,'Biaya langsung',0.1790,'cost'),
(7,'Kualitas',0.2500,'benefit');

3.1.2. Membuat Data Tabel Alternatif

Data-data mengenai kandidat yang akan dievaluasi seperti yang tertera pada contoh kasus di atas dapat di representasikan dalam tabel database sebagai berikut:

-- menghapus tabel cod_alternatives jika sudah ada
DROP TABLE IF EXISTS cod_alternatives;
-- membuat tabel cod_alternatives jika tidak ada
CREATE TABLE IF NOT EXISTS cod_alternatives(
  id_alternative SMALLINT(5) UNSIGNED NOT NULL AUTO_INCREMENT,
  name VARCHAR(30) NOT NULL,
  PRIMARY KEY(id_alternative)
) ENGINE=MyISAM;

-- memasukkan data-data alternatif
INSERT INTO cod_alternatives(id_alternative,name)
VALUES
(1,'Boga Extra'),
(2,'Rasa Extra'),
(3,'Sari Extra'),
(4,'Rasa Inti'),
(5,'Organik Sejahtera'),
(6,'Sari Sejahtera'),
(7,'Sari Prima'),
(8,'Sari Mandiri'),
(9,'Fresh Inti'),
(10,'Sari Utama');

Dalam tabel cod_alternatives tersebut hanya disimpan id dan nama alternatif-nya; dalam pengembangannya dapat ditambahkan atribut/properti data lainnya, semisal alamat, nomor telepon, email, dan sebagainya sesuai kebutuhan. Namun dalam contoh ini hanya diperlukan namanya saja.

3.1.3. Membuat Data Tabel Hasil Evaluasi

Berikutnya adalah membuat tabel yang berisi hasil evaluasi dari tiap-tiap kandidat(alternatif) terhadap kriteria-kriteria yang diberikan. Data-data yang ada pada contoh kasus di atas dapat di representasikan dalam tabel relasi antara tabel cod_criterias dengan tabel cod_alternatives, yaitu tabel cod_evaluations sebagai berikut:

-- menghapus tabel cod_evaluations jika sudah ada
DROP TABLE IF EXISTS cod_evaluations;
-- membuat tabel cod_evaluations jika tidak ada
CREATE TABLE IF NOT EXISTS cod_evaluations(
  id_alternative SMALLINT(5) UNSIGNED NOT NULL,
  id_criteria TINYINT(3) UNSIGNED NOT NULL,
  value FLOAT NOT NULL,
  PRIMARY KEY (id_alternative,id_criteria)
)ENGINE=MyISAM;

INSERT INTO cod_evaluations(id_alternative,id_criteria,value)
VALUES
(1,1,3),(1,2,5),(1,3,8),(1,4,9),(1,5,8),(1,6,4),(1,7,5),
(2,1,4),(2,2,3),(2,3,7),(2,4,9),(2,5,8),(2,6,3),(2,7,3),
(3,1,3),(3,2,3),(3,3,8),(3,4,7),(3,5,4),(3,6,3),(3,7,5),
(4,1,4),(4,2,4),(4,3,7),(4,4,9),(4,5,6),(4,6,5),(4,7,3),
(5,1,2),(5,2,4),(5,3,7),(5,4,9),(5,5,4),(5,6,3),(5,7,3),
(6,1,1),(6,2,5),(6,3,5),(6,4,6),(6,5,4),(6,6,3),(6,7,5),
(7,1,1),(7,2,5),(7,3,4),(7,4,6),(7,5,6),(7,6,3),(7,7,5),
(8,1,3),(8,2,3),(8,3,8),(8,4,9),(8,5,5),(8,6,3),(8,7,5),
(9,1,1),(9,2,3),(9,3,8),(9,4,7),(9,5,4),(9,6,6),(9,7,4),
(10,1,1),(10,2,5),(10,3,7),(10,4,8),(10,5,7),(10,6,3),(10,7,5);

3.2. Koneksi Ke Database Server

Koneksi ke database server serta pengambilan data-data dari database diperlukan untuk selanjutnya diproses menggunakan metode CODAS.

Dari databse yang sudah dibuat, kita bisa membuat script php untuk membuat koneksi ke database server dengan extension mysqli sebagai berikut:

<?php
//-- konfigurasi database
$dbhost 'localhost';
$dbuser 'root';
$dbpass '';
$dbname 'db_dss';
//-- koneksi ke database server dengan extension mysqli
$db = new mysqli($dbhost,$dbuser,$dbpass,$dbname);
//-- hentikan program dan tampilkan pesan kesalahan jika koneksi gagal
if ($db->connect_error) {
    die(
'Connect Error ('.$db->connect_errno.')'.$db->connect_error);
}
?>

Sesuaikan nilai-nilai $dbhost,$dbuser,$dbpass dan $dbname dengan konfigurasi database yg digunakan.

3.2.1 Mengambil Data Alternatif

Sebelum masuk kebagian inti perhitungan dengan metode CODAS, sebelumnya diambil terlebih dahulu data-data yang akan digunakan dari database. Yang pertama ada data Alternatif. Data ini diambil dari tabel cod_alternatives dan dimasukkan ke dalam variabel $alternatif dengan kode script PHP seperti berikut

<?php
//-- inisialisasi variabel array alternatif
$alternatif=array();
$sql='SELECT * FROM cod_alternatives';
$data=$db->query($sql);
while(
$row $data->fetch_object()){
    
$alternatif[$row->id_alternative]=$row->name;
}
?>

Data nama alternatif dimasukkan ke dalam variabel $alternatif dengan index/key array-nye merupakan id_alternatif-nya

3.2.2 Mengambil Data Kriteria dan Bobot

Data kriteria dan bobot diambil dari tabel cod_criterias dan dimasukkan dalam variabel array $kriteria dan $w sebagai berikut:

<?php
//-- inisialisasi variabel array kriteria dan bobot (W)
$kriteria=Array=array();
$sql='SELECT * FROM cod_criterias';
$data=$db->query($sql);
while(
$row $data->fetch_object()){
    
$kriteria[$row->id_criteria]=array($row->name,$row->attribute);
    
$w[$row->id_kriteria]=$row->weight;
}
?>

Data kriteria berupa nama kriteria dan atribut/tipe-nya dimasukkan ke dalam variabel array dua dimensi $kriteria, key/index yang pertama merupakan id_criteria-nya scodngkan index/key yang kedua, jika '0' maka adalah nama kriteria-nya sendangkan jika '1' maka merupakan atribut/tipe-nya. Sebagai contoh untuk $kriteria[2][0] berisi data nama dari kriteria ke-2 yaitu 'Pengiriman' dengan atribut/tipe 'benefit'

Scodngkan untuk data nilai bobot-nya dimasukkan ke dalam variabel $w dengan index/key-nya berupa id_kriteria yang bersesuaian

3.3. Langkah-Langkah CODAS

Bagian berikutnya adalah bagian inti dari perhitungan dengan metode CODAS. Di sini dijelaskan langkah per langkah-nya untuk kode PHP-nya, sesuai dengan langkah-langkah perhitungan CODAS secara manual sebelumnya.

3.3.1. Menentukan Matriks Keputusan (X)

Mengacu pada persamaan COD-01 kita dapat membuat matriks keputusan (X) dengan mengambil data dari tabel cod_evaluations yang kemudian dimasukkan dalam variable array $X dengan kode PHP sebagai berikut:

<?php
//-- inisialisasi variabel array matriks keputusan X
$X=array();
//-- ambil nilai dari tabel
$sql='SELECT * FROM cod_evaluations';
$data=$db->query($sql);
while(
$row $data->fetch_object()){
    
$i=$row->id_alternative;
    
$j=$row->id_criteria;
    
$X[$i][$j]=$aij;
}
?>

Variable array $X merupakan array dua dimensi, dimana dimensi yang pertama merupakan index dari alternatif-nya, scodngkan dimensi yang kedua merupakan index kriteria-nya.$X[$i][$j] berarti merupakan data matrik keputusan untuk alternatif ke $i dan kriteria ke $j

3.3.2. Matriks Normalisasi (N)

Dari matrik keputusan X yang sudah ditentukan dilangkah sebelumnya, kemudian dicari nilai Normalisasinya (N) dengan script berikut:

<?php
//-- inisialisasi array nilai normalisasi (N)
$N=array();
//-- proses untuk setiap data alternatif ke-i
foreach($X as $i=>$xi){
    
$N[$i]=array();
    
//-- proses untuk setiap data alternatif ke-i kriteria ke-j
    
foreach($xi as $j=>$xij){
        if(
$kriteria[$j][1]=='benefit'){
            
//-- normalisasi utk kriteria benefit
            
$N[$i][$j]=$xij/$x_max[$j];
        }else{
            
//-- normalisasi utk kriteria cost
            
$N[$i][$j]=$x_min[$j]/$xij;
        }
    }
}
?>

Sesuai dengan persamaan COD-02, untuk normalisasi dari data berkriteria benefit maka nilainya dibagi dengan nilai maksimum $x_max pada kriteria tersebut; sedangkan untuk data yang berkriteria cost maka nilai normalisasinya adalah merupkan hasil pembagian nilai minimum $x_min pada kriteria tersebut dibagi dengan nilai datanya.

Nilai-nilai maksimum $x_max dan minimum $x_min untuk masing-masing kriteria sebelumnya dicari dengan script sebagai berikut:

<?php
//-- inisialisasi Nilai Min dan Max
$x_min=$x_max=array();
//-- proses untuk setiap data alternatif ke-i
foreach($X as $i=>$xi){
    
//-- proses untuk setiap data alternatif ke-i kriteria ke-j
    
foreach($xi as $j=>$xij){
        
//-- inisialisasi Nilai Min dan Max utk kriteria ke-j
        
if(!isset($x_min[$j])){
            
$x_min[$j]=10;
            
$x_max[$j]=1;
        }
        
//-- menentukan nilai min/max tiap kriteria
        
$x_min[$j]=($x_min[$j]>$xij)?$xij:$x_min[$j];
        
$x_max[$j]=($x_max[$j]<$xij)?$xij:$x_max[$j];
    }
}
?>

Dalam mencari nilai maksimum $x_max dan minimum $x_min untuk tiap-tiap kriteria sebelumnya diinisialisasi dengan nilai sebagai berikut:

  • nilai minimum $x_min diinisialisasi dengan nilai yang tertinggi (dalam contoh ini memakai nilai 10, sesuaikan dengan nilai data terbesar yang ada dalam matriks keputusan X yang diolah)
  • nilai maximum $x_max diinisialisasi dengan nilai yang terendah (dalam contoh ini memakai nilai 1, sesuaikan dengan nilai data terkecil yang ada dalam matriks keputusan X yang diolah)

Nilai maksimum/minimum untuk setiap kriteria diperoleh dengan membandingkan nilai $x_max/$x_min dengan nilai data matriks keputusan X untuk alternatif ke-i dan kriteria ke-j, yaitu nilai variable $xij dalam script tersebut

3.3.3. Matriks Normalisasi Terbobot (R)

Berdasarkan persamaan COD-03 dan COD-04 dibuat script sebagai berikut :

<?php
//-- inisialisasi Nilai Normalisasi Terbobot (R)
$R=array();
foreach(
$N as $i=>$ni){
    
//-- inisialisasi Nilai Normalisasi Terbobot Alternatif ke-i (Ri)
    
$R[$i]=array();
    foreach(
$ni as $j=>$nij){
        
//-- menentukan Nilai Normalisasi Terbobot Alternatif ke-i kriteria ke-j (Rij)
        
$R[$i][$j]=$nij*$w[$j];
    }
}
?>

Dalam script di atas, nilai normalisasi terbobot R didapat dari nilai matriks normalisasi N dikali dengan nilai bobot w ditiap kriteria-nya.

3.3.4. Menentukan Nilai Ideal Negatif(NS)

Langkah selanjutnya adalah menghitung nilai Ideal Negatif NS sebagai berikut:

<?php
//-- inisialisasi array NS
$ns=array();
foreach(
$N as $i=>$ni){
    foreach(
$ni as $j=>$nij){
        
//-- inisialisasi nilai Ideal Negatif kriteria ke-j (NSj)
        
if(!isset($ns[$j])) $ns[$j]=1;
        
//-- menentukan nilai minimum per kriteria
        
$ns[$j]=$ns[$j]>$R[$i][$j]?$R[$i][$j]:$ns[$j];
    }
}
?>

Nilai Ideal Negatif NS adalah nilai terkecil (minimum) untuk setiap kriteria. Sebelumnya untuk tiap-tiap kriteria nilai Ideal NEgatif untuk kriteria ke-j ($ns[$j]) diinisialisasi dengan nilai tertinggi yang mungkin yaitu 1, untuk kemudian dibandingan dengan nilai Normalisasi Terbobot untuk kriteria-j dari setiap alternatif ke-i ($R[$i][$j]) untuk diambil nilai yang lebih kecil.

3.3.5. Menghitung Jarak Euclidian dan Taxicab(E/T)

Langkah berikutnya adalah menghitung Jarak Euclidian dan Taxicab E/T dengan script berikut ini:

<?php
//-- inisialisasi array nilai jarak Euclidean dan Taxicab (E/T)
$E=$T=array();
foreach(
$R as $i=>$ri){
    
//-- inisialisasi nilai jarak Euclidean dan Taxicab (E/T) alternatif ke-i
    
$E[$i]=0;
    
$T[$i]=0;
    foreach(
$ri as $j=>$rij){
        
//-- menghitung jumlah kuadrat selisih nilai
        
$E[$i]+=($rij-$ns[$j])*($rij-$ns[$j]);
        
//-- menghitung jarak Taxicab
        //-- menhitung jumlah absolute selisih nilai
        
$T[$i]+=abs($rij-$ns[$j]);
    }
}
//-- menghitung akar kuadarat jumlah kuadrat nilai selisih
foreach($E as $i=>$e){
    
$E[$i]=sqrt($e);
}
?>

3.3.6. Membentuk Matriks Relative Assessment (RA)

Berdasarkan persamaan COD-09 sampai dengan COD-11 kemudian dicari nilai Relative Assessments dengan script berikut:

<?php
//-- fungsi ambang batas Jarak Euclidean
function f_tau($x,$tau){
    
$v_tau=abs($x)<$tau?0:1;
    return 
$v_tau;
}

//-- membuat matriks ralative Assessment RA
$h=array();
for(
$i=1;$i<=$jml_alternative;$i++){
    
$h[$i]=array();
    for(
$k=1;$k<=$jml_alternative;$k++){
        
//-- menghitung selisih jarak Euclidian antara alternatif ke-i dan ke-k
        
$delta=$E[$i]-$E[$k];
        
//-- menghitung nilai item Relative Assessment
        
$h[$i][$k]=$delta+f_tau($delta,$tau)*($T[$i]-$T[$k]);
    }
}
?>

Pada dasarnya nilai item matriks Relative Assessment (RA) untuk alternatif ke-i terhadap alternatif ke-k adalah nilai hi,k adalah merupakan nilai selisih jarak Euclidian alternatif ke-i dengan alternatif ke-K (Ei-Ek) dalam ambang batas tertentu ($\tau$); di luar (ambang batas) tersebut maka merupakan nilai selisih jarak Taxicab dari alternatif ke-i dengan alternatif ke-k (Ti-Tk).

3.3.7. Mengitung Nilai Assessment Score (H)

Mengacu pada persamaan COD-12 dicari Nilai assessment Score (H) dengan script sebagai berikut:

<?php
//-- menghitung nilai Assessment score H
$H=array();
for(
$i=1;$i<=$jml_alternative;$i++){
    
$H[$i]=0;
    foreach(
$h[$i] as $hi){
        
$H[$i]+=$hi;
    }
}
?>

Nilai assessment Score untuk alternatif kei($H[$i]) merupakan jumlah keselurah nilai item matriks Relative Assessment dari alternatif $i terhadap alternatif-alternatif yang lain.

3.3.8. Perangkingan

Bagian terakhir dari proses metode CODAS adalah perankingan, dimana data skor penilaian $H diurutkan dari yang terbesar hingga yang terkecil. Berikut adalah contoh script PHP-nya

<?php
//-- mengurutkan secara descending
arsort($H);
//-- ambil key-index yang pertama
$terpilih=key($H);
echo 
"Dari hasil perhitungan dipilih alternatif ke-{$terpilih}"
    
." ({$alternatif[$terpilih]}) <br>dengan nilai skor penilaian "
    
." sebesar {$H[$terpilih]}";
?>

Data nilai skor penilaian $H diurutkan secara descending dengan fungsi arsort() untuk mengurutkan berdasarkan nilay array namun tetap mempertahankan key-index-nya. Setelah diurutkan, maka item array yang pertama adalah nilai skor penilaian H yang terpilih, dan key-index-nya menunjukkan alternatif ke-i. Key-index ini diambil dengan fungsi key(), dan selanjutnya ditampilkan hasilnya dengan mengambil nilai dari variabel array $alternatif dengan key-index yang didapat dari baris sebelumnya, yaitu dalam variabel $terpilih. Hasil yang ditampilkan kurang lebih, sebagai berikut :

Dari hasil perhitungan dipilih alternatif ke-1 (Boga Extra)
dengan nilai skor penilaian sebesar 0.89745595850687

Source code selengkapnya bisa dilihat di tautan ini source source